
Published on the Web 08/06/2012 www.pubs.acs.org/accounts Vol. 45, No. 10 ’ 2012 ’ 1749–1758 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 1749
10.1021/ar300068k & 2012 American Chemical Society

Photomagnetism in Cyano-Bridged Bimetal
Assemblies

SHIN-ICHI OHKOSHI*, †, ‡ AND HIROKO TOKORO†, §

†Department of Chemistry, School of Science, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, ‡CREST, JST, K's Gobancho,
7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan, and §NEXT, JSPS,

8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan

RECEIVED ON MARCH 5, 2012

CONS P EC TU S

T he study of photoinduced phase-transition materials has implications for the fields of
inorganic chemistry, solid-state chemistry, and materials science. Cyano-bridged

bimetal assemblies are promising photomagnetic materials. Because cyano-bridged bimetal
assemblies possess various absorption bands in the visible light region, their electronic and
spin states can be controlled by visible light irradiation. Moreover, the selection of magnetic
metal ions and organic ligands provide a way of controlling spin�spin interactions through a
cyano bridge.

In this Account, we describe cyano-bridged bimetal assemblies developed in our laboratory.
CuII2[Mo

IV(CN)8] 3 8H2O (CuMo), RbIMnII[FeIII(CN)6] (RbMnFe), and CoII3[W
V(CN)8]2 3 (pyrimidine)4 3

6H2O (CoW) induce photomagnetism via photoinduced metal-to-metal charge transfers (MM0CT), while FeII2[Nb
IV(CN)8] 3

(4-pyridinealdoxime)8 3 2H2O (FeNb) exhibits a photoinduced magnetization via a photoinduced spin crossover. Irradiation with
473 nm light causes the CuMo system to exhibit a spontaneous magnetization with a Curie temperature (TC) of 25 K, but irradiation
with 532, 785, and 840 nm light reduces the magnetization. In this reversible photomagnetic process, excitation of the MM0CT
from MoIV to CuII produces a ferromagnetic mixed-valence isomer of CuICuII[MoV(CN)8] 3 8H2O (CuMo0). CuMo0 returns to CuMo
upon irradiation in the reverse-M0MCT band. RbMnFe shows a charge transfer (CT)-induced phase transition from the MnII�FeIII

phase to the MnIII�FeII phase. Irradiation with 532 nm light converts the MnIII�FeII phase into the MnII�FeIII phase, and we
observe photodemagnetization. In contrast, irradiation of the MnII�FeIII phase with 410 nm light causes the reverse phase
transition. A CT-induced Jahn�Teller distortion is responsible for this visible light-induced reversible photomagnetic effect. In the
CoW system, a CT-induced spin transition causes the thermal phase transition from the CoII�WV phase to the CoIII�WIV phase.
Irradiation of the CoIII�WIV phase with 840 nm light causes ferromagnetism with a TC of 40 K and magnetic coercive field (Hc) of
12 000 Oe, but excitation of the back M0MCT (CoII f WV) with 532 nm light leads to the reverse phase transition.

These examples of the photomagnetic effect have occurred by exciting MM0CT bands. In the fields of inorganic chemistry
and materials science, researchers have studied extensively the photoinduced phase transitions between low-spin (LS) and
high-spin (HS) transition metal ions. Recently, we have observed the first example of photoinduced spin crossover
ferromagnetism with a FeNb system (TC = 20 K and Hc = 240 Oe), in which a strong superexchange interaction between
photoproduced FeII(HS) and neighboring paramagnetic NbIV operates through a CN bridge. The optical switching magnets
described in this Account may lead to novel optical recording technologies such as optomagnetic memories and optical
computers.

1. Introduction
Research on photoinduced phase-transition materials is

an attractive subject in the fields of inorganic chemistry,

solid-state chemistry, and materials science.1�4 Some of

the applicative results have been utilized in industrial ap-

plications, including optical recording materials such as

digital versatile discs (DVDs) andBlu-ray discs.5,6 In addition,

magnetic materials have a longer industrial history as

magnetic recording materials in tapes and discs. For exam-

ple, magneto-optical disks, in which recording is performed

by heating using light a magnetic material beyond its Curie

temperature (TC), are still being utilized to this day. Unlike

these conventional magnetic recording materials, photo-

magnetic materials (optical switching magnets) described
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herein switch their physical properties when exposed to

light, thereby leading to the potential development of novel

optical recording technologies such as opto-magnetic mem-

oriesandoptical computers.Photomagneticmaterials, therefore,

have been receiving not only scholarly attention from the

perspective of nonequilibrium phase transition, but also

extensive industrial attention.

As candidate materials that demonstrate photomagnet-

ism, metal assembled complexes are thought to be promis-

ing. Since metal complexes possess various absorption

bands in the visible light region, there is a possibility of

controlling their electronic states and spin states using

visible light. Moreover, magnetic metal ions and organic

ligands can be selected in view of spin�spin interactions,

and thusmaterial design suitable for each research objective

can be conducted. Additionally, when a cyanometalate is

bonded to a transition metal, the ligand field of the cyano-

metalate, that is, the energy levels of the d-orbitals, is

influenced. For example, in an octacyanometalate building

block, it takes various coordination geometries, for example,

square antiprism, bicapped trigonal prism, dodecahedron,

resulting in that various crystal structures can be formed.

Motivated by these characteristics, various cyano-bridged

metal-complex magnetic materials with zero-dimensional

high-spin clusters, one-, two-, and three-dimensional (3D)

magnetic structures havebeendesignedand synthesized.7�35

By focusing on the various coordination structures of

metal ions and the structural flexibility of cyano groups,

several studies have reported on functional metal complex

magnetic materials that respond to physical stimuli

such as light,36�57 pressure,58,59 and electric field,60,61 as

well as chemical stimuli such as humidity62 and gaseous

adsorption.63,64 In particular, we have developed several

magnetic functional cyano-bridged metal complexes, for

example, photomagneticmaterials,38,39,46�56magneticma-

terials exhibiting two compensation temperatures,65 ferro-

electric ferromagnetic metal complex,60 piezoelectric

ferromagnetic material exhibiting magnetization-induced

second harmonic generation (MSHG),66,67 humidity and

solvent vapor sensitive magnetic materials,62,64 and so on.

Herein, we describe cyano-bridged magnetic metal com-

plexes thatwe have developed: (i) CuII2[MoIV(CN)8] 38H2O, (ii)

RbIMnII[FeIII(CN)6], and (iii) CoII
3[W

V(CN)8]2 3 (pyrimidine)4 3
6H2O, which induce photomagnetic phenomena via photo-

induced charge-transfer transition, and (iv) FeII2[Nb
IV(CN)8] 3

(4-pyridinealdoxime)8 32H2O, which exhibits photoinduced

spin-crossover ferromagnet.

2. Visible-Light-Induced Reversible Photo-
magnetism of a CuMo Octacyano-Complex
Based on Photoinduced Charge Transfer
In mixed-valence metal complexes, metal-to-metal charge

transfer (MM0CT) absorption bands are observed in the

visible region. If charge transfer can be induced by the

photoexcitation of the MM0CT, the electronic states of

mixed-valence metal complexes can be changed.

Herein, the visible-light-induced reversible magnetism

of CuMo octacyano mixed valence metal complex,53,55

Cu2[Mo(CN)8] 38H2O, is described.

This complex, obtained as a purple powder, has a 3D

structure where Cu and Mo are alternately bridged via a

cyano group (Figure 1a). Magnetization vs temperature

curves of this complex before and after irradiation are

FIGURE 1. Visible-light-induced reversible photomagnetism in the
CuMo octacyano-complex. (a) Schematic crystal structure. (b) Magneti-
zation vs temperature curves before (black line) and after light irradia-
tion with 473 nm light (red line), after irradiation with 658, 785, or
840 nm light (blue line). (c) Magnetic hysteresis loops at 3 K before
(black line) andafter irradiatingwith473nm light (red line), after thermal
treatment of 250 K (blue line).
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shown in Figure 1b. Before irradiation, the paramagnetic

behavior with CuII (S= 1/2) was observed. Upon exposure to

a 473 nm continuous wave (cw) laser light, spontaneous

magnetization was induced, resulting in a ferromagnetic

state with TC = 25 K. Magnetization vs magnetic field curve

after irradiation indicated magnetic coercive field (Hc) of

photoinduced phase is 30 Oe (Figure 1c). Conversely, when

this photoinduced ferromagnetic phase was irradiated with

laser light with λ g 520 nm, we observed decreases in

magnetization. Figure 1b depicts such decreases in magne-

tization upon light irradiation with a wavelength of 658,

785, or 840 nm. The UV�vis absorption spectrum of film-

type of Cu2[Mo(CN)8] 38H2O showed the MM0CT band from

MoIV to CuII around 480 nm (Figure 2). After irradiation with

473 nm light, reverse-M0MCT band from CuI to MoV was

observed around 710 nm. The photoinduced spontaneous

magnetization is thought to be inducedby the photoinduced

charge-transfer transition from MoIV (S = 0) to CuII (S = 1/2).

After the charge transfer was completed, the composition of

its valence isomer became CuICuII[MoV(CN)8] 38H2O, with

unreacted CuII remaining. It is thought that a superexchange

interaction was induced between the unreacted CuII and the

photoproduced MoV (S = 1/2) via cyano groups, which lead

the ferromagnetism (Figure 3a). In contrast, photoinduced

demagnetization indicates that the laser irradiations of 658,

785, or 840 nm caused the photoinduced back charge

transfer from CuI to MoV, thereby restoring the initial state.

It is worth noting that this photoinduced magnetization also

disappeared upon a thermal treatment (250 K) and reverted

to the initial state. The consideration of this reversible

photomagnetic phenomenon in terms of the energy dia-

gram ofmixed-valencemetal complexes68�71 suggests that

irradiation to MM0CT absorption bands with a 473 mn laser

light produced a valence isomer. Irradiation to the back

photoinduced charge transfer absorption bands with a

658, 785, or 840 nm laser light converted the valence

isomer to the initial state with light (Figure 3b). This photo-

magnetic effect was repeatedly observed, indicating that

this complex is a visible-light-induced, reversible photomag-

netic material. Moreover, an analogue of this complex,

CsI2Cu
II
7[MoIV(CN)8]4 36H2O, can be electrochemically

synthesized as a thin film, with similar photomagnetic

properties.54

3. Visible-Light-Induced Reversible
Photomagnetism of a RbMnFe Hexacyano-
Complex Based on Photoinduced Charge-
Transfer-Induced Jahn�Teller Distortion
Photomagnetism can be achieved by light irradiation onto

magnetic materials which have a bistability. In bistable

materials, the energy barrier between bistable states main-

tains a photoinduced state, resulting the observation of the

persistent photoinduced magnetic state. From this perspec-

tive, RbMnFe hexacyano complex (Figure 4a),46�48,72�77

one of a Prussian blue analogue, is suitable for observing

photomagnetism. It is known to exhibit a charge-transfer

phase transition fromMnII (S=5/2)�NC�FeIII (S=1/2) [high-

temperature (HT)] phase toMnIII (S= 2)�NC�FeII (S= 0) [low-

temperature (LT)] phase accompanying Jahn-teller distor-

tion on MnIII.

To excite anMM0CT band, the LT phase was exposed to a

532 nm laser light. Before light irradiation, magnetization vs

temperature curve of the LT phase revealed that this phase

FIGURE 2. UV�vis absorption spectra of the CuMo octacyano-complex
at 3 K before (black line) and after irradiationwith 473 nm light (red line)
and after thermal treatment of 250 K (blue line).

FIGURE 3. (a) Mechanism of magnetic ordering of photomagnetic
phenomena in the CuMo octacyano-complex. (b) Mechanism of
photoinduced charge transfer in a class II mixed-valence complex.
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was ferromagnet with TC = 12 K (Figure 4b). Additionally,

upon exposure to a 532 nm laser light, a decrease in

magnetization was observed, and upon subsequent expo-

sure to a 410 nm laser light, an increase in magnetization

was observed. Such a change phenomenon in magnetiza-

tion was repeatedly observed by alternately irradiating the

LT phase with 532 and 410 nm lasers.

This reversible photomagnetism can be explained by the

following. Exposure to a 532 nm laser light excited the

MM0CT (FeII f MnIII) band, inducing a photoinduced phase

with the same electronic state as the HT phase. The relaxa-

tion of the metastable photoinduced phase to the stable

LT phase was suppressed by thermal energy. In contrast,

the ligand-to-metal charge transfer (LMCT) (CN� f FeIII)

band excitation of [Fe(CN)6]
3� induced by irradiation with a

410 nm laser light resulted in the different photoexcited

state, resulting in the transition to the initial LT phase.

To our knowledge, this is the first observation of such

an optical switching between a ferromagnetism and an

antiferromagnetism.

4. Photoinduced Gigantic Coercivity of a CoW
Octacyano-Complex Based on Photoinduced
Charge-Transfer-Induced Spin Transition
Octacyano metal complexes can have various coordination

structures that depend on the chemical environment, e.g.,

square antiprism (D4h), dodecahedron (D2d), and bicapped

trigonal prism (C2v). Therefore, octacyano metal complexes

have the potential to sensitively respond to external stimuli.

Here we discuss photomagnetic phenomena exhibiting

gigantic coercivity, which are observed in Co3[W(CN)8]2-

(prm)4 36H2O (CoWprm complex),51,52 a 3D structure con-

taining pyrimidine (prm) as an organic ligand.

The crystal structure of a CoWprm complex, obtained as a

red powder, belongs to themonoclinic system (P21/n) where

CoandWare alternatively bridged via cyano ligands to form

a 3D network structure (Figure 5a). This complex showed

a charge-transfer-induced spin transition as a function of

temperature. The electronic state of the HT phase is

CoII(HS; S = 3/2)3�WV(S = 1/2)2 and that of the LT phase is

CoIII(LS; S= 0)2�WIV(S= 0)2�CoII(HS; S= 3/2). This transition

is induced by the MM0CT between Co and W and the spin

transition in CoIII. Ultraviolet�visible (UV�vis) absorption

spectra revealed a peak around 500 nm assigned toMM0CT,

FIGURE 4. Visible-light-induced reversible photomagnetism in the
RbMnFe hexacyano-complex. (a) Crystal structure. (b) Magnetization vs
temperature curves before and after light irradiation. Before irradiation
(black line), after irradiation with 532 nm light (red line), after irradiation
with 410 nm light (blue line).

FIGURE 5. Crystal structure of the CoWprm octacyano-complex. (a)
Asymmetric unit (left) and view along the a-axis (right). (b) Magnetization
vs temperature curves before and after light irradiation. (c) Magnetic
hysteresis loops before and after light irradiation (at 2 K). Before irradia-
tion (black lines), after irradiation with 840 nm light (red lines), and after
thermal treatment of 150 K or irradiation with 532 nm light (blue lines).
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CoII f WV, in the HT phase and a peak around 750 nm

assigned to M0MCT, WIV f CoIII, in the LT phase.

The LT phase of the CoWprm complex is paramagnetic.

Upon light irradiating (λ = 840 nm), the sample exhibits

spontaneous magnetization (Figure 5b). TC and Hc of this

photoinduced magnetic phase are 40 K and 12000 Oe,

respectively (Figure 5c).With the subsequent irradiation by a

laser light (λ = 532 nm), the magnetization was decreased.

Such a change inmagnetizationwas repeatedly observedby

alternatively irradiating the CoWprm complex with 840 and

532 nm lasers. Investigation of the electronic states of the

CoWprm complex using infrared (IR) absorption spectra

revealed that the visible-light reversible photomagnetic

phenomenon observed was induced by the reversible

charge-transfer-induced spin transition between the LT

phase, CoIII(LS)2�WIV
2�CoII(HS), and the photoinduced

phase, CoII(HS)3�WV
2 (Figure 6).

5. Photoinduced Spin Crossover Ferromag-
netism of a FeNb Octacyano-Complex
Transition metal complexes (from d4 to d7) with octahedral

coordination can transit from a high-spin (HS) state to a

FIGURE 6. Mechanism of the photomagnetic phenomenon in the
CoWprm octacyano-complex due to photoinduced charge-transfer-
induced spin transition.

FIGURE 7. Crystal structure of the FeNb(4-pyoxm) octacyano-complex. (a) Asymmetric unit and (b) cyano-bridged Fe�Nb three-dimensional
framework. (c) χMT�T curves of the FeNb(4-pyoxm) octacyano-complex. (d) Temperature dependence of UV�vis differential spectra. Spectra are
depicted from 300 to 100 K at 20 K intervals by setting a spectrum at 300 K as the standard.
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low-spin (LS) as temperature decreases, which is called a

“spin crossover transition”. This phenomenon was first dis-

covered in an FeIII complex, and many spin crossover com-

plexes have been reported since then.78�80 Transition

phenomena from the LS state to the HS state by light

irradiation are termed “light-induced excited spin-state trap-

ping (LIESST)” and have been studied as a technique to

control paramagnetic states using light. Since its first discov-

ery in an FeII complex ([FeII(1-propyltetrazole)6](BF4)2),
81

a wide variety of studies have been conducted.78,80

Spin crossover complexes that have been reported are

mostly those composed of molecular crystals, where mole-

cules gather to crystallize via the van der Waals force.

However, if spin crossover complexes that have 3D network

structures can be synthesized and HS sites can form a

magnetic ordering with each other, then the spontaneous

magnetization can be expected. From this perspective,

we synthesized a new octacyano metal complex,

Fe2[Nb(CN)8] 3 (4-pyoxm)8 32H2O (FeNb(4-pyoxm) complex),

which contains Fe, Nb, and 4-pyridinealdoxime (4-pyoxm)

as the organic ligand and then discovered ferromagnetism

caused by photoinduced spin crossover,49 which is de-

scribed below.

The crystal structure of an FeNb(4-pyoxm) complex is

tetragonal (space group: I41/a) as shown in Figure 7a and b,

where an FeII ion is connected to two N atoms of cyano

groups and to four N atoms of 4-pyoxm. In addition, four

cyano groups of NbIV(CN)8 are bridged with Fe ions, and the

other four are not bridged. Fe and Nb ions are continually

bridged via cyano groups to form a 3D network structure.

A measurement of the temperature dependence of the

molar magnetic susceptibility (χM) of an FeNb(4-pyoxm)

complex revealed a drastic decrease in the χMT around

130 K (Figure 7c). In the UV�vis absorption spectra, absorp-

tion assigned to the d�d transitions (1A1f
1T2,

1A1f
1T1) of

FeII(LS) (S = 0) that was absent at room temperature was

observed around 480 and 650 nm at low temperature

region (Figure 7d). Additionally, in the 57Fe M€ossbauer

spectra, FeII(LS) was observed at low temperature. These

results suggest that a decrease in χMT around 130 K is

induced by the spin crossover transition from FeII(HS)

(S = 2) to FeII(LS) (S = 0).

Next we discuss photomagnetic effects in an FeNb(4-

pyoxm) complex. Prior to light irradiation, the LT phase of

an FeNb(4-pyoxm) complex is paramagnetic, while after

light irradiation with a 473 nm cw laser light, spontaneous

magnetization and magnetic hysteresis appear, suggesting

that the paramagnetic phase changes ferromagnetic phase

(Figure 8). In the photoinduced ferromagnetic phase, TC, Hc,

and saturation magnetization (Ms) are 20 K, 240 Oe, and

7.4 μB, respectively. The Ms value of 7.4 μB agrees well with

a calculated value of 7.7 μB obtained in a case where the

spins of photoinduced FeII(HS) (S= 2, gFeII(HS) = 2.17) andNbIV

(S = 1/2, gNbIV= 1.99) are antiparallel to each other. Before

and after light irradiationwith a 473 nm laser light, a UV�vis

spectra at 3 K revealed a decrease in the absorption of
1A1f

1T2 and 1A1f
1T1 of FeII(LS), while M€ossbauer spectra

revealed a decrease in the FeII(LS) peak and an increase

in FeII(HS) peak. These results suggests that the observed

photomagnetic phenomenon was induced by the photo-

induced spin crossover from FeII(LS) to FeII(HS).

The photomagnetism of FeNb(4-pyoxm) complexes can

be explained by a scheme described below. First, in the LT

phase before light irradiation, a paramagnetic ionNbIV and a

diamagnetic ion FeII(LS) are alternately bridged via a cyano

group, and thus the spin source is physically remote, leading

paramagnetism. Upon irradiation with a 473 nm light, FeII-

(LS), whose ground state is 1A1, is excited to a singlet state 1T2
(or 1T1), a part of which subsequently transits to a quintet

state, 5T2, through a triplet state 3T2 or 3T1 (Figure 9).

FIGURE 8. Photomagnetism in the FeNb(4-pyoxm) octacyano-complex
due to photoinduced spin crossover. (a) Magnetization vs temperature
curves before and after light irradiation. (b) Magnetic hysteresis loops
before and after light irradiation at 2 K. Before irradiation (black lines)
and after irradiation with 473 nm light (red lines).
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In a photoinduced phase, which is metastable, the spins

of photoinduced FeII(HS) and those of neighboring NbIV

are antiferromagnetically aligned by the superexchange

interaction via cyano groups, leading spontaneous

magnetization (Figure 10). Note that the superexchange

interaction constant (Jex) between FeII(HS) and NbIV is

calculated by molecular field theory,39,49 that is, |Jex| =

3kBTC{ZNbIVFeII(HS)ZFeII(HS)NbIVSFeII(HS)(SFeII(HS)þ1)SNbIV(SNbIVþ1)}�1/2,

where the spinquantumnumbers areSNbIV =1/2and SFeII(HS) =

2, the numbers of the nearest neighbor are ZNbIVFeII(HS) = 4 and

ZFeII(HS)NbIV = 2, kB is the Boltzmann constant, and TC = 20 K.

Consequently, Jex was estimated to be�6.9 cm�1.

In the present study, we have synthesized a new 3D

networkmetal complex Fe2[Nb(CN)8](4-pyridinealdoxime)8 3
2H2O and succeeded in the observation of a photoinduced

spin crossover ferromagnetism for the first time. This

photomagnetic effect is induced by the LIESST and the

superexchange interaction between FeII(HS) and NbIV. In

the previouswork, we reported Fe2[Nb(CN)8] 3 (3-pyCH2OH)8 3
4.6H2O,

25 in which spin-crossover and ferrimagnetism

coexist, but this compound did not show the light-induced

spin-crossover ferromagnetism. This is because the crystal

structure is very highly symmetric (cubic: Ia3d) and results

in a very stable alternating arrangement of 3 3 3�FeII(HS)�
FeII(LS)� 3 3 3 , and consequently, photoinduced FeII(HS)

domains cannot be formed. Hence, a somewhat low-

symmetrical crystal structure is effective to produce photo-

induced FeII(HS) domains, which is necessary to realize

LIESST-induced bulk magnetization.

6. Conclusions
In addition to the materials described herein, we are

conducting research on the photoinduced magnetic pole

inversion in a hexacyanometal complex system, (FeIII0.4-

MnII0.6)1.5[Cr
III(CN)6] 37.5H2O,

38,39 and photomagnetism in

octacyanometal complex systems, CsI2Cu
II
7[MoIV(CN)8]4 3

6H2O,
54 [CuII(1,4,8,11-tetraazacyclodecane)]2[MoIV(CN)8] 3

10H2O,
56 and CsICoII(3-cyanopyridine)2[W

V(CN)8] 3H2O.
50

In hexacyanometal complexes, the photomagnetic phe-

nomena of a K0.2Co1.4[Fe(CN)6] 36.9H2O system and the

photoinduced change of magnetic susceptibility in a

K1.54V
II
0.77V

III
0.08[Cr

III(CN)6](SO4)0.16 33.1H2O system are

known.42,82 In systems where photochromic molecules

are introduced into magnetic complexes such as oxalate

metal complexes and single-molecule magnets, changes

in magnetic coercive field and alternating current (ac) mag-

netic susceptibility induced by photoisomerization are

observed.83�85

Besides these molecular magnetic materials, photomag-

netic effects are also reported in dilute magnetic semi-

conductors and perovskite-type manganese oxides.86,87

Furthermore, theoretical studies on photoinduced phase

transition are actively being conducted.88�93 Metal com-

plexes are superior as a model material to explore novel

functional materials. By taking advantage of the knowledge

that has been obtained through our previous studies,

we have recently discovered a novel metal oxide, λ-tritita-

nium pentoxide (λ-Ti3O5), which exhibits photoreversible

metal�semiconductor phase transition at room temp-

erature,94 suggesting the possibility of developing room-

temperature photomagnetism by concurrently studying

magnetism.
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